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Introduction

Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively
new research area although based on the popular artificial neural networks (supposedly
mirroring brain function). With the development of the perceptron in the 1950s and
1960s by Frank RosenBlatt, research began on artificial neural networks. To further
mimic the architectural depth of the brain, researchers wanted to train a deep multi-
layer neural network – this, however, did not happen until Geoffrey Hinton in 2006
introduced Deep Belief Networks [1].

Recently, the topic of deep learning has gained public interest. Large web companies such
as Google and Facebook have a focused research on AI and an ever increasing amount
of compute power, which has led to researchers finally being able to produce results
that are of interest to the general public. In July 2012 Google trained a deep learning
network on YouTube videos with the remarkable result that the network learned to
recognize humans as well as cats [6], and in January this year Google successfully used
deep learning on Street View images to automatically recognize house numbers with
an accuracy comparable to that of a human operator [5]. In March this year Facebook
announced their DeepFace algorithm that is able to match faces in photos with Facebook
users almost as accurately as a human can do [9].

Deep learning and other AI are here to stay and will become more and more present in
our daily lives, so we had better make ourselves acquainted with the technology. Let’s
dive into the deep water and try not to drown!

Data Representations

Before presenting data to an AI algorithm, we would normally prepare the data to make
it feasible to work with. For instance, if the data consists of images, we would take each
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image as a matrix of raw pixel values and extract edges to represent it at a higher level.
We could also take this edge representation and represent it at a higher level by detecting
local shapes. At an even higher level local shapes could be represented as object parts,
and so on, until we get the understanding out of the data that we are interested in
working with. See Figure 1.

Figure 1: An image at different levels of representation. From raw input, to edges,
to local shapes, to object parts, etc. This figure is taken from Figure 1.1 in Bengio’s
monograph [1].

Deep learning networks are able to learn intermediate data representations on their own.
That is, presenting a trained deep learning network with an image of raw pixel values,
each layer of neural units will represent the image at an increasingly higher level. For
a classification task, the top layer could then be passed on as input to a classifier for
training and testing.
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Generative Model

Even though the deep architecture can be seen as an input to a different process, it
holds very interesting qualities on its own. We can set up the deep architecture as a
generative model whereby we can learn a distribution and generate samples from it.
This means, training it with a certain dataset, we will be able to see if it has learned the
characteristics of the dataset by having it generate new and previously unseen examples
of data that could have come from that dataset.

Setting up a Deep Learning Network

In my search for a suitable library, I came across Theano [2] which is a Python library
that allows to define, optimize and evaluate mathematical expressions efficiently. Among
other features it provides us with numerical tricks for stability and allows transparent
use of the GPU. And the best part, there is a section of deep learning tutorials to help
get a deep learning network up and running.

Objective of my Deep Learning Network

In the tutorial on Deep Belief Networks, the network is first pre-trained using a greedy
layer-wise unsupervised Restricted Boltzmann Machine training, and then fine-tuned
using a Multilayer perceptron to have it act as a classifier.

Since a Deep Belief Network is a generative model, it would be of great interest to see
some samples of what it has learned during training. I will undertake this job of setting
up a generative Deep Belief Network that will learn the distribution of a dataset of
images, and I will modify the code such that we can pull out samples to see whether it
has learned anything about the image appearances.

The data used in the tutorials is a package of serialized modified MNIST images. I
therefore also need to modify the code to be able to load in datasets from image files.
In particular, I would like to see if I can teach the DBN what a human face looks like
from example images of faces.

Theory

The following is the bare minimum of theory needed to explain how to sample from
the generative Deep Belief Network. For more details, I refer the reader to Bengio’s
monograph Learning Deep Architectures for AI [1]. For an introduction to neural net-
works have a look at the online book Neural Networks and Deep Learning by Michael
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Nielsen, and for sampling and machine learning in general Bishop [3] is a source of
inspiration.

Deep Belief Network

A Deep Belief Network (DBN) is made up of a number of neural networks with a Re-
stricted Boltzmann Machine (RBM) on top. In fact each of the neural networks are
trained using additional RBMs with weights shared with the neural networks. The
graphical model of a DBN is illustrated in Figure 2.

Figure 2: Graphical model of a Deep Belief Network with observed vector x and hidden
layers h1, h2 and h3. This figure is taken from Figure 4.4 in Bengio’s monograph [1].

For a DBN with layers (x = h0,h1, . . . ,h`) and binary units, the units of layer hk, k ∈
{0, 1, . . . , `− 2} are independent given the units in the layer above, hk+1. For each unit
i the neuron activation function is given by

P (hk
i = 1|hk+1) = sigm

bk
i +

∑
j

W k+1
i,j hk+1

j

 , k ∈ {0, 1, . . . , `− 2} (1)

with bk a vector of offsets, W k a matrix of weights and the sigmoid function

sigm(u) =
1

1 + e−u
. (2)

The joint distribution of the top two layers h`−1 and h` is a Restricted Boltzmann
Machine

P (h`−1,h`) ∝ eb
′h`−1+c′h`+h`′Wh`−1

. (3)

The graphical model of an RBM is illustrated in Figure 3.
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Figure 3: Graphical model of a Restricted Boltzmann Machine. There are no links
between units of the same layer, thereby making the conditionals P (h|x) and P (x|h)
factorize. This figure is taken from Figure 4.5 in Bengio’s monograph [1].

The distribution of a Deep Belief Network with layers (x = h0,h1, . . . ,h`) and binary
units is thus given by

P (h0,h1, . . . ,h`) =

(
`−2∏
k=0

P (hk|hk+1)

)
P (h`−1,h`). (4)

Sampling from a DBN

What to do in order to obtain a sample of the DBN generative model for x is outlined
by Bengio [1]. First we need to sample a visible representation h`−1 from the RBM at
the top layer. Due to the special structure of an RBM where the units of each layers are
independent given the units of the other layer, we have that

P (h`|h`−1) =
∏
i

P (h`
i |h`−1) (5)

with

P (h`
i = 1|h`−1) = sigm(ci + Wih

`−1). (6)

Likewise for P (h`−1|h`) we have that

P (h`−1|h`) =
∏
i

P (h`−1
i |h`) (7)

with

P (h`−1
j = 1|h`) = sigm(bj + W ′

j̇
h`). (8)
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We can obtain a sample from an RBM by Gibbs sampling. We run a Gibbs chain for n
steps starting with a data example x1 represented at the h`−1 layer by h`−1

1 ,

h`
1 ∼ P (h`|h`−1

1 )

h`−1
2 ∼ P (h`−1|h`

1)

h`
2 ∼ P (h`|h`−1

2 ) (9)

...

h`−1
n+1 ∼ P (h`−1|h`

n).

For k ∈ {` − 1, ` − 2, . . . , 1} we then sample hk−1 from P (hk−1|hk). When we reach
x = h0 we have the DBN sample.

Modifications

Serializing trained parameters

Before we can sample from the DBN, we need to have the network trained. This train-
ing can take hours so we want to be able to save the learned parameters, such that
we quickly can experiment with the sampling. With cPickle we can easily save the
parameters:

# collect dbn weights

dbn_weights = []

for i in xrange(len(dbn.rbm_layers)):

dbn_weights.append([dbn.rbm_layers[i].W,

dbn.rbm_layers[i].hbias,

dbn.rbm_layers[i].vbias])

# dump to file

pkl_gz_file = gzip.GzipFile(os.path.join(dbn_weights_folder,

dbn_weights_file), ’wb’)

cPickle.dump(dbn_weights, pkl_gz_file, -1)

pkl_gz_file.close()

and load them back in:

# load in weights from file

pkl_gz_file = gzip.open(os.path.join(dbn_weights_folder,

dbn_weights_file), ’rb’)

dbn_weights = cPickle.load(pkl_gz_file)
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pkl_gz_file.close()

# restore weights

for i in xrange(len(dbn.rbm_layers)):

dbn.rbm_layers[i].W = dbn_weights[i][0]

dbn.rbm_layers[i].hbias = dbn_weights[i][1]

dbn.rbm_layers[i].vbias = dbn_weights[i][2]

Loading in image data

The data for the DBN should be provided as a 2-dimensional Theano symbolic data
array of shape (number of data examples × number of entries in each data examples).
Each entry is a 32-bit floating point between 0.0 and 1.0. 32-bit floats are used to be
able to put computations on the GPU. The 0.0-1.0 interval is because each entry will
be understood in the lowest layer neural network as the probability of this entry being
a binary 1. Given that we have a folder with 8-bit gray-valued images, all images of the
same size, we can load in the images as a dataset with this function:

def load_images(image_dir):

image_arrays = []

report_width_height = True

for root, dirs, files in os.walk(image_dir):

for file in files:

image_file = os.path.join(root, file)

image = Image.open(image_file)

if report_width_height:

(image_width, image_height) = image.size

report_width_height = False

image_array = numpy.array(image);

image_array = image_array / 255.

image_arrays.append(image_array.flatten())

image_arrays = numpy.asarray(image_arrays,

dtype=theano.config.floatX)

return (theano.shared(image_arrays, borrow=True),

image_width,

image_height)

The image_width and image_height are returned as well to be used where the code
was previously hardcoded to the shape of the MNIST dataset.
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Sampling

I have restructured the sampling code for the RBM by dividing it into functions such
that we can reuse some of the sampling functionality in the DBN.

Sampling from the RBM

We now sample from the RBM using the function

def sample_RBM(rbm, test_set_x, n_chains, n_samples, rng, plot_every,

image_width, image_height, output_image_path):

# select test set examples at layer

persistent_vis_chain = random_data_samples(test_set_x,

n_chains,

rng)

# run the Gibbs chain to sample a new visible vector

vis_mfs, vis_samples = run_gibbs_chain(rbm,

persistent_vis_chain,

plot_every,

n_samples)

# save to image

save_samples(vis_mfs, n_samples, n_chains,

image_width, image_height, output_image_path)

where we have the functions

def random_data_samples(samples, n_rand, rng):

# find out the number of samples

n_samples = samples.get_value(borrow=True).shape[0]

# pick random examples, with which to

# initialize the persistent chain

idx = rng.randint(n_samples - n_rand)

return theano.shared(samples.get_value(borrow=True)[idx:idx + n_rand])
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def run_gibbs_chain(rbm, persistent_vis_chain, plot_every, n_samples):

# define one step of Gibbs sampling (mf = mean-field) define a

# function that does ‘plot_every‘ steps before returning the

# sample for plotting

[presig_hids, hid_mfs, hid_samples, presig_vis,

vis_mfs, vis_samples], updates = \

theano.scan(rbm.gibbs_vhv,

outputs_info=[None, None, None, None,

None, persistent_vis_chain],

n_steps=plot_every)

# add to updates the shared variable that takes care of our persistent

# chain.

updates.update({persistent_vis_chain: vis_samples[-1]})

# construct the function that implements our persistent chain.

# we generate the "mean field" activations for plotting and the actual

# samples for reinitializing the state of our persistent chain

sample_fn = theano.function([], [vis_mfs[-1], vis_samples[-1]],

updates=updates,

name=’sample_fn’)

vis_mfs = []

vis_samples = []

for idx in xrange(n_samples):

print ’ ... obtaining sample ’, idx

# generate ‘plot_every‘ intermediate samples that we discard,

# because successive samples in the chain are too correlated

vis_mf, vis_sample = sample_fn()

vis_mfs.append(vis_mf)

vis_samples.append(vis_sample)

return (vis_mfs, vis_samples)

def save_samples(vis_mfs, n_samples, n_chains,

img_w, img_h, output_image_path):

# create a space to store the image for plotting

# (we need to leave room for the tile_spacing as well)

image_data = numpy.zeros(((img_h + 1) * n_samples + 1,

(img_w + 1) * n_chains - 1),

dtype=’uint8’)

for idx in xrange(n_samples):
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# generate ‘plot_every‘ intermediate samples that we discard,

# because successive samples in the chain are too correlated

vis_mf = vis_mfs[idx]

print ’ ... plotting sample ’, idx

image_data[(img_h + 1) * idx:(img_h + 1) * idx + img_h, :] = \

tile_raster_images(

X=vis_mf,

img_shape=(img_h, img_w),

tile_shape=(1, n_chains),

tile_spacing=(1, 1))

# construct image

image = PIL.Image.fromarray(image_data)

image.save(output_image_path)

Sampling from the DBN

We can now sample from the DBN by calling the function

def sample_DBN(dbn, test_set_x, n_chains, n_samples, rng, plot_every,

image_width, image_height, output_image_path):

# select test set examples at layer x=h^0

bottom_vis_examples = random_data_samples(test_set_x, n_chains, rng)

# obtain a representation h^{l-1} by sampling

# through the layers h^0 -> h^1 -> ... -> h^{l-1}

pre_sigmoid_h, h_mean, h_sample = \

move_sample_from_bottom_to_top(dbn, bottom_vis_examples)

move_sample_from_bottom_to_top_theano = \

theano.function(inputs=[], outputs=h_sample)

top_vis_samples = theano.shared(move_sample_from_bottom_to_top_theano())

# run the Gibbs chain at the representation h^{l-1} to sample

# a new visible vector h^{l-1} from the top-level RBM

vis_mfs, vis_samples = run_gibbs_chain(dbn.rbm_layers[-1],

top_vis_samples,

plot_every,

n_samples)

# obtain a representation x=h^0 by sampling

# through the layers h^{l-1} -> h^{l-2} -> ... -> h^0

pre_sigmoid_vs, v_means, v_samples = \
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move_samples_from_top_to_bottom(dbn, vis_samples, n_samples)

move_sample_from_top_to_bottom_theano = \

theano.function(inputs=[], outputs=v_means)

bottom_vis_samples = move_sample_from_top_to_bottom_theano()

# save to image

save_samples(bottom_vis_samples, n_samples, n_chains,

image_width, image_height, output_image_path)

where we have the additional functions

def move_sample_from_bottom_to_top(dbn, sample):

for k in xrange(len(dbn.rbm_layers)-1):

pre_sigmoid_h, h_mean, h_sample = \

dbn.rbm_layers[k].sample_h_given_v(sample)

sample = h_sample

return [pre_sigmoid_h, h_mean, h_sample]

def move_sample_from_top_to_bottom(dbn, sample):

for k in reversed(xrange(len(dbn.rbm_layers)-1)):

pre_sigmoid_v, v_mean, v_sample = \

dbn.rbm_layers[k].sample_v_given_h(sample)

sample = v_sample

return [pre_sigmoid_v, v_mean, v_sample]

def move_samples_from_top_to_bottom(dbn, samples, n_samples):

pre_sigmoid_vs = []

v_means = []

v_samples = []

for i in xrange(n_samples):

pre_sigmoid_v, v_mean, v_sample = \

move_sample_from_top_to_bottom(dbn, samples[i])

pre_sigmoid_vs.append(pre_sigmoid_v)

v_means.append(v_mean)

v_samples.append(v_sample)

return [pre_sigmoid_vs, v_means, v_samples]
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Results

I have trained the Deep Belief Network on two different face datasets

• The ORL Database of Faces

• The Extended Yale Face Database B

The Deep Belief Network was set up to have an input layer of units equal to the image
resolution, and keeping the default configuration the DBN was created with 3 hidden
layers, each consisting of 1000 units.

Following the sampling procedure of the RBM tutorial, we choose 20 different test ex-
amples to start 20 simultaneous Gibbs chains. Each chain is run 10 times each time
taking 1000 steps, and the 20 samples that are obtained for each run of the Gibbs chains
will be depicted row-wise.

The ORL Database of Faces

The ORL Database of Faces [8] provided by AT&T Laboratories Cambridge is a small
dataset of 400 faces (10 different images of each of 40 distinct subjects).
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We notice that there is quite a lot of variation in the head position and facial expression,
so it will be interesting to see what the DBN learns from this dataset.

Let’s pull out some samples:
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Due to the relatively small dataset and the observed variations, the sampled faces are a
bit blurry, but nonetheless, the DBN definitely has learned something about faces!

The Extended Yale Face Database B

The Extended Yale Face Database B [4] contains 16128 images of 28 human subjects
under 9 poses and 64 illumination conditions.

We will run the DBN on the Cropped version [7] which consists of 2414 selected im-
ages (excluding ambient images) that are cropped to unify the faces.

Let’s see some samples:

14

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html


Great! Due to the unified faces we have a lot more details in our samples, and we
can conclude that the DBN has indeed learned a distribution of faces. The very dark /
half-dark images are not errors, they are a result of having different lighting conditions
in the dataset. For the DBN they are just as valid faces as the ones in good lighting
conditions.
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